POTENSI ROSUVASTATIN SEBAGAI AGEN ANTI FIBROTIK: KAJIAN IN VIVO STRUKTUR ALVEOLARIS PARU DAN JUMLAH SEL MAST TIKUS MODEL FIBROSIS
Abstract
Inflamasi kronis menyebabkan terjadi proliferasi sel fibroblast dan penebalan dinding alveolus akibat deposisi kolagen. Rosuvastatin merupakan salah satu obat golongan statin diduga memiliki efek anti inflamasi sehingga dapat menjadi agen anti fibrotik. Penelitian ini bertujuan mengetahui efek rosuvastatin terhadap ketebalan septum inter alveolaris dan jumlah sel mast pada tikus model fibrosis paru. Penelitian eksperimental dengan rancangan posttest only controlled group design. Penelitian ini menggunakan tikus Wistar jantan, berusia 8 minggu, berat badan (BB) 200-250 gram, berjumlah 15 ekor. Tikus diberikan amiodarone dosis 40 mg/kgBB selama 28 hari. Tikus dibagi dalam 3 Kelompok Perlakuan; K1: kontrol normal; K2: model fibrosis; K3: model fibrosis + terapi Rosuvastatin 10mg/kgBB selama 28 hari. Dilakukan pengukuran BB secara berkala. Gambaran ketebalan septum inter alveolaris didapatkan dari pewarnaan hematoksilin eosin (HE), gambaran sel Mast didapatkan dari pewarnaan Toluidine biru pada jaringan hati tikus, dan dikuantifikasi menggunakan perangkat lunak ImageJ. Data dianalisis dengan GrapPhad Prism 8.0.0 menggunakan uji non parametrik Kruskal-Wallis. Didapatkan Terapi rosuvastatin pada tikus model fibrosis paru menunjukan perbedaan bermakna ketebalan septum inter alveolaris (p=0,0001) dan jumlah sel mast berbeda bermakna (p=0,0009). Disimpulkan bahwa Rosuvastatin mampu memperbaiki ketebalan septum inter alveolaris dan jumlah sel mast pada tikus model fibrosis paru.
Downloads
References
Lederer, D. J., & Martinez, F. J. (2018). Idiopathic pulmonary fibrosis. N Engl J Med., 378(19):1811–1823.
John, A. E., Joseph, C., Jenkins, G., & Tatler, A. L. (2021). COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev., 302(1):228–240.
Ma, W., Shi, H., Wei, G., Hua, M., Ma, J., Cui, J., & Yu, H. (2020). Loureirin B attenuates amiodarone-induced pulmonary fibrosis by suppression of TGFβ1/Smad2/3 pathway. Trop J Pharmacol., 19(7):1371–1376.
Le, T., Hwang, W., Muralidhar, V., White, J. A., & Moore, M.S. (2017). First aid for the basic sciences : Organ systems (3rd Ed.). New York: Mc Graw Hill Education.
Wijsenbeek, M., & Cottin, V. (2020). Spectrum of fibrotic lung diseases. N Engl J Med., 383(10):958–968.
Yang, T., Chen, M., & Sun, T. (2013) Simvastatin attenuates TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells. Cell Physiol Biochem., 31(6):863-74.
Katzung, B. G. (2012). Basic and clinical pharmacology. (12th Ed.). New York: McGraw-Hill Education.
Nohria, A., Prsic, A., Liu, P., Okamoto, R., Creager, M. A., Selwyn, A., et al., (2009). Statin inhibit Rho Kinase activity in patients with atherosclerosis. Atheroscleros., 205(2):517-521.
El-Mohandes, E. M., Moustafa, A. M., Khalaf, H. A., & Hassan, Y. F. (2017). The role of mast cells and macrophages in amiodarone induced pulmonary fibrosis and the possible attenuating role of atorvastatin. Biotech Histochem., 92(7):467–480.
Mahavadi, P., Henneke, I., Ruppert, C., Knudsen, L., Venkatesan, S., Liebisch, G., et al. (2014). Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis. Toxicol scien., 142(1):285-297.
Darisan, K. N., Zaini, J., & Yuniadi, Y. (2013). Amiodarone and its pulmonal toxicity. J Kardiol Indones., Vol. 34(2):113-125.
Fang, T., Wang, M., Xiao, H., & Wei, X. (2019). Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol., 2019(35): 493-502.
Perez, F., Ruera, C. N., Miculan, E., Carasi, P., Dubois-Camacho, K., Garbi, L., et al. (2020). IL-33 Alarmin and its active proinflammatory fragments are released in small intestine in celiac disease. Front Immunol. 11(2020):581445.
Li, X., Shen, Y., Lu, Y., & Yang, J. (2015). Amelioration of bleomycin-induced pulmonary fibrosis of rats by aldose reductase inhibitor, epalrestat. Korean J Physiol Pharmacol., 41:401-411.
Totzke, J., Gurbani, D., Raphemot, R., Hughes, P. F., Bodoor K., Carlson, D. A., et al. (2017). Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease. Cell Chem Biol., 24(8):1029–1039.
Santos, D.M., Pantano, L., Pronzati, G., Grasberger, P., Probst, C.K., Black, K.E., et al. (2020). Screening for YAP inhibitors identifies statin as modulators of fibrosis. Am J Respir Cell Mol Biol., 62(4):479-492.
Jeong, A., Suazo, K. F., Wood, W. G., Distefano, M. D., & Li, L. (2018). Isoprenoids and protein prenylation: Implications in the pathogenesis and therapeutic intervention of alzheimer’s disease. Crit Rev Biochem Mol Biol., 53(3):279-310.
Pradeu, T., & Cooper, E. L. (2012). The danger theroy: 20 years later. Front Immunol., 3(287):1-9.
Copyright (c) 2024 Medika Alkhairaat: Jurnal Penelitian Kedokteran dan Kesehatan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Medika Alkhairaat : Jurnal Penelitian Kedokteran dan Kesehatan agree to the following terms:
1. Authors retain copyright and grant Journal Medika Alkhairaat right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/) that allows others to remix, adapt, build upon the work non-commercially with an acknowledgement of the work’s authorship and initial publication in Journal Medika Alkhairaat.
2. Authors are permitted to copy and redistribute the journal’s published version of the work non-commercially (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Journal Medika Alkhairaat.